Unidade VII: Arvore Binaria -
Pesquisa e Caminhamento

Pe) 9%

\\¢

Instituto de Ciéncias Exatas e Informatica
o Departamento de Ciéncia da Computacao
PUC Minas

Arvore Binaria: Pesquisa e Caminhamento

« Funcionamento basico da Pesquisa
 Algoritmo pesquisa em Java
» Analise de complexidade da Pesquisa

« Caminhamento

Algoritmos e Estruturas de Dados Il (2)

Arvore Binaria: Pesquisa e Caminhamento

* Funcionamento basico da Pesquisa -
 Algoritmo pesquisa em Java
» Analise de complexidade da Pesquisa

« Caminhamento

Algoritmos e Estruturas de Dados Il (3)

Arvore Binaria: Pesquisa e Caminhamento

Funcionamento Basico da Pesquisa

(1) Se a raiz estiver vazia, retornar uma pesquisa negativa

(2) Senao, se o elemento procurado for igual ao da raiz, retornar uma

pesquisa positiva

(3) Senao, se o elemento procurado for menor que o da raiz, chamar o

metodo de pesquisa para a subarvore da esquerda

(4) Senao (elemento procurado € maior que o da raiz), chamar o

metodo de pesquisa para a subarvore da direita

Algoritmos e Estruturas de Dados Il (4)

Arvore Binaria: Pesquisa e Caminhamento

« Funcionamento basico da Pesquisa
» Algoritmo pesquisa em Java <
» Analise de complexidade da Pesquisa

« Caminhamento

Algoritmos e Estruturas de Dados Il (5)

Arvore Binaria: Pesquisa e Caminhamento

Classe Arvore Binaria

class ArvoreBinaria {
No raiz;
ArvoreBinaria() { raiz = null; }
void inserir(int x) { }

boolean pesquisar(int x) { }

void remover(int x) { }
void caminharCentral() { }
void caminharPre() { }
void caminharPos() { }

Vamos pesquisar se o (1)
4 esta em nossa arvore =

Algoritmos e Estruturas de Dados Il (6)

Arvore Binaria: Pesquisa e Caminhamento

Algoritmo de Pesquisa em Java

//Pesquisar(4)

boolean pesquisar(int x) {
return pesquisar(x, raiz);

}

boolean pesquisar(int x, No i) {
boolean resp;

if (i == null) {
resp = false;
} elseif (x == i.elemento) { Raiz
resp = true;
} elseif (x < i.elemento) {
resp = pesquisar(x, i.esq);
}else {)
resp = pesquisar(x, i.dir); —
} m
return resp;

Algoritmos e Estruturas de Dados Il (7)

Arvore Binaria: Pesquisa e Caminhamento

Algoritmo de Pesquisa em Java

//Pesquisar(4)

boolean pesquisar(int x) {
return pesquisar(x, raiz);

}

boolean pesquisar(int x, No i) {
boolean resp;

if (i == null) {
resp = false;
} elseif (x == i.elemento) { Raiz
resp = true;
} elseif (x < i.elemento) {
resp = pesquisar(x, i.esq);
}else {)
resp = pesquisar(x, i.dir); —
} m
return resp;

Algoritmos e Estruturas de Dados Il (8)

Arvore Binaria: Pesquisa e Caminhamento

Algoritmo de Pesquisa em Java

//Pesquisar(4)

boolean pesquisar(int x) {
return pesquisar(x, raiz);

}

boolean pesquisar(int x, No i) {
boolean resp;

if (i == null) {
resp = false;
} elseif (x == i.elemento) { Raix
resp = true;
} elseif (x < i.elemento) {
resp = pesquisar(x, i.esq);
}else {)
resp = pesquisar(x, i.dir); —
} m
return resp;

Algoritmos e Estruturas de Dados Il (9)

Arvore Binaria: Pesquisa e Caminhamento

Algoritmo de Pesquisa em Java

//Pesquisar(4)

boolean pesquisar(int x) {
return pesquisar(x, raiz);

}

boolean pesquisar(int x, No i) {
boolean resp;

if (i == null) {
resp = false;
} elseif (x == i.elemento) { Raix
resp = true;
} elseif (x < i.elemento) {
resp = pesquisar(x, i.esq);
}else {)
resp = pesquisar(x, i.dir); —
} m
return resp;

Algoritmos e Estruturas de Dados Il (10)

Arvore Binaria: Pesquisa e Caminhamento

Algoritmo de Pesquisa em Java

//Pesquisar(4)

boolean pesquisar(int x) {
return pesquisar(x, raiz);

}

boolean pesquisar(int x, No i) {
boolean resp;

if (i == null) {
resp = false;

} elseif (x == i.elemento) { Raix
resp = true;

} elseif (x < i.elemento) {
resp = pesquisar(x, i.esq);

}else {)
resp = pesquisar(x, i.dir); —

} m

return resp;

} false: n(3) == null

Algoritmos e Estruturas de Dados Il (11)

Arvore Binaria: Pesquisa e Caminhamento

Algoritmo de Pesquisa em Java

//Pesquisar(4)

boolean pesquisar(int x) {
return pesquisar(x, raiz);

}

boolean pesquisar(int x, No i) {
boolean resp;

if (i == null) {
resp = false;

} elseif (x == i.elemento) { Raix
resp = true;

} elseif (x < i.elemento) {
resp = pesquisar(x, i.esq);

}else {)
resp = pesquisar(x, i.dir); —

} ™

return resp;

) false: 4 ==

Algoritmos e Estruturas de Dados Il (12)

Arvore Binaria: Pesquisa e Caminhamento

Algoritmo de Pesquisa em Java

//Pesquisar(4)

boolean pesquisar(int x) {
return pesquisar(x, raiz);

}

boolean pesquisar(int x, No i) {
boolean resp;

if (i == null) {
resp = false;

} elseif (x == i.elemento) { Raix
resp = true;

} elseif (x <i.elemento) {
resp = pesquisar(x, i.esq);

}else {)
resp = pesquisar(x, i.dir); —

} m

return resp;

) false: 4 <3

Algoritmos e Estruturas de Dados Il (13)

Arvore Binaria: Pesquisa e Caminhamento

Algoritmo de Pesquisa em Java

//Pesquisar(4)

boolean pesquisar(int x) {
return pesquisar(x, raiz);

}

boolean pesquisar(int x, No i) {
boolean resp;

if (i == null) {
resp = false;
} elseif (x == i.elemento) { Raix
resp = true;
} elseif (x < i.elemento) {
resp = pesquisar(x, i.esq);
)} else { 0
resp = pesquisar(x, i.dir); —
} ™
return resp;

Algoritmos e Estruturas de Dados Il (14)

Arvore Binaria: Pesquisa e Caminhamento

Algoritmo de Pesquisa em Java

//Pesquisar(4)

boolean pesquisar(int x) {
return pesquisar(x, raiz);

}

boolean pesquisar(int x, No i) {
boolean resp;

if (i == null) {
resp = false;
} elseif (x == i.elemento) { Raix
resp = true;
} elseif (x < i.elemento) {
resp = pesquisar(x, i.esq);
}else {)
resp = pesquisar(x, i.dir); —
} ™
return resp;

Algoritmos e Estruturas de Dados Il (15)

Arvore Binaria: Pesquisa e Caminhamento

Algoritmo de Pesquisa em Java

//Pesquisar(4)

boolean pesquisar(int x) {
return pesquisar(x, raiz);

}

boolean pesquisar(int x, No i) {
boolean resp;

if (i == null) {
resp = false;
} elseif (x == i.elemento) { Raiz
resp = true;
} elseif (x < i.elemento) {
resp = pesquisar(x, i.esq);
}else {)
resp = pesquisar(x, i.dir); —
} m
return resp;

Algoritmos e Estruturas de Dados Il (16)

Arvore Binaria: Pesquisa e Caminhamento

Algoritmo de Pesquisa em Java

//Pesquisar(4)

boolean pesquisar(int x) {
return pesquisar(x, raiz);

}

boolean pesquisar(int x, No i) {
boolean resp;

if (i == null) {
resp = false;
} elseif (x == i.elemento) { Raiz
resp = true;
} elseif (x < i.elemento) {
resp = pesquisar(x, i.esq);
}else {)
resp = pesquisar(x, i.dir); —
} m
return resp;

Algoritmos e Estruturas de Dados Il (17)

Arvore Binaria: Pesquisa e Caminhamento

Algoritmo de Pesquisa em Java

//Pesquisar(4)

boolean pesquisar(int x) {
return pesquisar(x, raiz);

}

boolean pesquisar(int x, No i) {
boolean resp;

if (i == null) {
resp = false;

} elseif (x == i.elemento) { Raiz
resp = true;

} elseif (x < i.elemento) {
resp = pesquisar(x, i.esq);

}else {)
resp = pesquisar(x, i.dir); —

} m

return resp;

) false: n(5) == null

Algoritmos e Estruturas de Dados Il (18)

Arvore Binaria: Pesquisa e Caminhamento

Algoritmo de Pesquisa em Java

//Pesquisar(4)

boolean pesquisar(int x) {
return pesquisar(x, raiz);

}

boolean pesquisar(int x, No i) {
boolean resp;

if (i == null) {
resp = false;

} elseif (x == i.elemento) { Raiz
resp = true;

} elseif (x < i.elemento) {
resp = pesquisar(x, i.esq);

}else {)
resp = pesquisar(x, i.dir); —

} m

return resp;

) false: 4 ==

Algoritmos e Estruturas de Dados Il (19)

Arvore Binaria: Pesquisa e Caminhamento

Algoritmo de Pesquisa em Java

//Pesquisar(4)

boolean pesquisar(int x) {
return pesquisar(x, raiz);

}

boolean pesquisar(int x, No i) {
boolean resp;

if (i == null) {
resp = false;

} elseif (x == i.elemento) { Raiz
resp = true;

} elseif (x <i.elemento) {
resp = pesquisar(x, i.esq);

}else {)
resp = pesquisar(x, i.dir); —

} ™

return resp;

) true: 4 <5

Algoritmos e Estruturas de Dados Il (20)

Arvore Binaria: Pesquisa e Caminhamento

Algoritmo de Pesquisa em Java

//Pesquisar(4)

boolean pesquisar(int x) {
return pesquisar(x, raiz);

}

boolean pesquisar(int x, No i) {
boolean resp;

if (i == null) {
resp = false;
} elseif (x == i.elemento) { Raiz
resp = true;
} elseif (x < i.elemento) {
resp = pesquisar(x, i.esq);
}else {)
resp = pesquisar(x, i.dir); —
} m
return resp;

Algoritmos e Estruturas de Dados Il (21)

Arvore Binaria: Pesquisa e Caminhamento

Algoritmo de Pesquisa em Java

//Pesquisar(4)

boolean pesquisar(int x) {
return pesquisar(x, raiz);

}

boolean pesquisar(int x, No i) {
boolean resp;

if (i == null) {
resp = false;
} elseif (x == i.elemento) {
resp = true;
} elseif (x < i.elemento) {
resp = pesquisar(x, i.esq);
} else { 0
resp = pesquisar(x, i.dir); —
} [
return resp;

Algoritmos e Estruturas de Dados Il (22)

Arvore Binaria: Pesquisa e Caminhamento

Algoritmo de Pesquisa em Java

//Pesquisar(4)

boolean pesquisar(int x) {
return pesquisar(x, raiz);

}

boolean pesquisar(int x, No i) {
boolean resp;

if (i == null) {
resp = false;
} elseif (x == i.elemento) {
resp = true;
} elseif (x < i.elemento) {
resp = pesquisar(x, i.esq);
} else { 0
resp = pesquisar(x, i.dir); —
} [
return resp;

Algoritmos e Estruturas de Dados Il (23)

Arvore Binaria: Pesquisa e Caminhamento

Algoritmo de Pesquisa em Java

//Pesquisar(4)

boolean pesquisar(int x) {
return pesquisar(x, raiz);

}

boolean pesquisar(int x, No i) {
boolean resp;

if (i == null) {
resp = false;
} elseif (x == i.elemento) {
resp = true;
} elseif (x < i.elemento) {
resp = pesquisar(x, i.esq);
}else {)
resp = pesquisar(x, i.dir); —
} [
return resp;
) false: n(4) == null

Algoritmos e Estruturas de Dados Il (24)

Arvore Binaria: Pesquisa e Caminhamento

Algoritmo de Pesquisa em Java

//Pesquisar(4)

boolean pesquisar(int x) {
return pesquisar(x, raiz);

}

boolean pesquisar(int x, No i) {
boolean resp;

if (i == null) {
resp = false;
} elseif (x == i.elemento) {
resp = true;
} elseif (x < i.elemento) {
resp = pesquisar(x, i.esq);
} else { 0
resp = pesquisar(x, i.dir); —
} [
return resp;
) true: 4 ==

Algoritmos e Estruturas de Dados Il (25)

Arvore Binaria: Pesquisa e Caminhamento

Algoritmo de Pesquisa em Java

//Pesquisar(4)

boolean pesquisar(int x) {
return pesquisar(x, raiz);

}

boolean pesquisar(int x, No i) {
boolean resp;

if (i == null) {
resp = false;
} elseif (x == i.elemento) {
resp = true;
} elseif (x < i.elemento) {
resp = pesquisar(x, i.esq);
}else {)
resp = pesquisar(x, i.dir); —
} [
return resp;

Algoritmos e Estruturas de Dados Il (26)

Arvore Binaria: Pesquisa e Caminhamento

Algoritmo de Pesquisa em Java

//Pesquisar(4)

boolean pesquisar(int x) {
return pesquisar(x, raiz);

}

boolean pesquisar(int x, No i) {
boolean resp;

if (i == null) {
resp = false;
} elseif (x == i.elemento) {
resp = true;
} elseif (x < i.elemento) {
resp = pesquisar(x, i.esq);
} else { 0
resp = pesquisar(x, i.dir); —
} [
return resp;

Algoritmos e Estruturas de Dados Il (27)

Arvore Binaria: Pesquisa e Caminhamento

Algoritmo de Pesquisa em Java

//Pesquisar(4)

boolean pesquisar(int x) {
return pesquisar(x, raiz);

}

boolean pesquisar(int x, No i) {
boolean resp;

if (i == null) {
resp = false;
} elseif (x == i.elemento) {
resp = true;
} elseif (x < i.elemento) {
resp = pesquisar(x, i.esq);
} else { 0
resp = pesquisar(x, i.dir); —
} [
return resp;

Algoritmos e Estruturas de Dados Il (28)

Arvore Binaria: Pesquisa e Caminhamento

Algoritmo de Pesquisa em Java

//Pesquisar(4)

boolean pesquisar(int x) {
return pesquisar(x, raiz);

}

boolean pesquisar(int x, No i) {
boolean resp;

if (i == null) {
resp = false;
} elseif (x == i.elemento) { Raiz
resp = true;
} elseif (x < i.elemento) {
resp = pesquisar(x, i.esq);
}else {)
resp = pesquisar(x, i.dir); —
} m
return resp;

Algoritmos e Estruturas de Dados Il (29)

Arvore Binaria: Pesquisa e Caminhamento

Algoritmo de Pesquisa em Java

//Pesquisar(4)

boolean pesquisar(int x) {
return pesquisar(x, raiz);

}

boolean pesquisar(int x, No i) {
boolean resp;

if (i == null) {
resp = false;
} elseif (x == i.elemento) { Raiz
resp = true;
} elseif (x < i.elemento) {
resp = pesquisar(x, i.esq);
}else {)
resp = pesquisar(x, i.dir); —
} ™
return resp;

Algoritmos e Estruturas de Dados Il (30)

Arvore Binaria: Pesquisa e Caminhamento

Algoritmo de Pesquisa em Java

//Pesquisar(4)

boolean pesquisar(int x) {
return pesquisar(x, raiz);

}

boolean pesquisar(int x, No i) {
boolean resp;

if (i == null) {
resp = false;
} elseif (x == i.elemento) { Raiz
resp = true;
} elseif (x < i.elemento) {
resp = pesquisar(x, i.esq);
}else {)
resp = pesquisar(x, i.dir); —
} m
return resp;

Algoritmos e Estruturas de Dados Il (31)

Arvore Binaria: Pesquisa e Caminhamento

Algoritmo de Pesquisa em Java

//Pesquisar(4)

boolean pesquisar(int x) {
return pesquisar(x, raiz);

}

boolean pesquisar(int x, No i) {
boolean resp;

if (i == null) {
resp = false;
} elseif (x == i.elemento) { Raix
resp = true;
} elseif (x < i.elemento) {
resp = pesquisar(x, i.esq);
}else {)
resp = pesquisar(x, i.dir); —
} ™
return resp;

Algoritmos e Estruturas de Dados Il (32)

Arvore Binaria: Pesquisa e Caminhamento

Algoritmo de Pesquisa em Java

//Pesquisar(4)

boolean pesquisar(int x) {
return pesquisar(x, raiz);

}

boolean pesquisar(int x, No i) {
boolean resp;

if (i == null) {
resp = false;
} elseif (x == i.elemento) { Raix
resp = true;
} elseif (x < i.elemento) {
resp = pesquisar(x, i.esq);
}else {)
resp = pesquisar(x, i.dir); —
} m
return resp;

Algoritmos e Estruturas de Dados Il (33)

Arvore Binaria: Pesquisa e Caminhamento

Algoritmo de Pesquisa em Java

//Pesquisar(4)

boolean pesquisar(int x) {
return pesquisar(x, raiz);

}

boolean pesquisar(int x, No i) {
boolean resp;

if (i == null) {
resp = false;
} elseif (x == i.elemento) { Raix
resp = true;
} elseif (x < i.elemento) {
resp = pesquisar(x, i.esq);
}else {)
resp = pesquisar(x, i.dir); —
} m
return resp;

Algoritmos e Estruturas de Dados Il (34)

Arvore Binaria: Pesquisa e Caminhamento

Algoritmo de Pesquisa em Java

//Pesquisar(4)

boolean pesquisar(int x) {
return pesquisar(x, raiz);

i retorna true

boolean pesquisar(int x, No i) {
boolean resp;

if (i == null) {
resp = false;
} elseif (x == i.elemento) { Raiz
resp = true;
} elseif (x < i.elemento) {
resp = pesquisar(x, i.esq);
}else {)
resp = pesquisar(x, i.dir); —
} m
return resp;

Algoritmos e Estruturas de Dados Il (35)

Arvore Binaria: Pesquisa e Caminhamento

Algoritmo de Pesquisa em Java

//Pesquisar(4)

boolean pesquisar(int x) {
return pesquisar(x, raiz);

;

boolean pesquisar(int x, No i) {
boolean resp;

if (i == null) {
resp = false;
} elseif (x == i.elemento) { Raiz
resp = true;
} elseif (x < i.elemento) {
resp = pesquisar(x, i.esq);
}else {)
resp = pesquisar(x, i.dir); —
} m
return resp;

Algoritmos e Estruturas de Dados Il (36)

Arvore Binaria: Pesquisa e Caminhamento

« Funcionamento basico da Pesquisa
 Algoritmo pesquisa em Java
- Analise de complexidade da Pesquisa <

« Caminhamento

Algoritmos e Estruturas de Dados Il (37)

Arvore Binaria: Pesquisa e Caminhamento

Analise de complexidade da Pesquisa

* Melhor Caso: ©(1) comparagoes e acontece, por exemplo, na raiz

* Pior Caso: O(n) comparacOes e acontece, por exemplo, quando inserimos

os elementos em ordem e o elemento desejado esta na folha

« Caso Médio: O(lg(n)) comparacoes e acontece, por exemplo, quando a
arvore esta balanceada e procuramos um elemento localizado em uma das

folhas

Algoritmos e Estruturas de Dados Il (38)

Arvore Binaria: Pesquisa e Caminhamento

« Funcionamento basico da Pesquisa
 Algoritmo pesquisa em Java
» Analise de complexidade da Pesquisa

« Caminhamento -

Algoritmos e Estruturas de Dados Il (39)

Arvore Binaria: Pesquisa e Caminhamento

Caminhamento

« Consiste em “caminhar” por todos os nos da arvore

« Também chamado de percorrer, buscar, visitar, mostrar,

» Analise de complexidade: O(n) visitas

Algoritmos e Estruturas de Dados Il (40)

Arvore Binaria: Pesquisa e Caminhamento

Alguns Caminhamentos

void caminharCentral(No i) {
if (i 1= null) {
caminharCentral(i.esq);
System.out.print(i.elemento + “ ”’);
caminharCentral(i.dir);

}
} void caminharPre(No i) {
llcentral ou em ordem if (i 1= null) {
System.out.print(i.elemento + “”);
caminharPre(i.esq);
caminharPre(i.dir);
}
void caminharPos(No i) { }
if (i 1= null) { llpré-fixado ou pré-ordem

caminharPos(i.esq);
caminharPos(i.dir);
System.out.print(i.elemento + “ ”);

}
}

lIpés-fixado ou pos-ordem

Algoritmos e Estruturas de Dados Il (41)

Arvore Binaria: Pesquisa e Caminhamento

Caminhamento Central ou Em Ordem

void caminharCentral(No i) {
if (i 1= null) {
caminharCentral(i.esq);
System.out.print(i.elemento + “ ”’);
caminharCentral(i.dir);

}
}

O i

Tela

Algoritmos e Estruturas de Dados Il (42)

Arvore Binaria: Pesquisa e Caminhamento

Caminhamento Central ou Em Ordem

void caminharCentral(No i) {
if (i 1= null) {
caminharCentral(i.esq);
System.out.print(i.elemento + “ ”’);
caminharCentral(i.dir);

}
}

O .

Tela

Algoritmos e Estruturas de Dados Il (43)

Arvore Binaria: Pesquisa e Caminhamento

Caminhamento Central ou Em Ordem

void caminharCentral(No i) {
if (i 1= null) {
caminharCentral(i.esq);
System.out.print(i.elemento + “ ”’);
caminharCentral(i.dir);

}
}

O i

Tela

Algoritmos e Estruturas de Dados Il (44)

Arvore Binaria: Pesquisa e Caminhamento

Caminhamento Central ou Em Ordem

void caminharCentral(No i) {
if (i 1= null) {
caminharCentral(i.esq);
System.out.print(i.elemento + “ ”’);
caminharCentral(i.dir);

}
}

O i

Tela

Algoritmos e Estruturas de Dados Il (45)

Arvore Binaria: Pesquisa e Caminhamento

Caminhamento Central ou Em Ordem

void caminharCentral(No i) {
if (i 1= null) {
caminharCentral(i.esq);
System.out.print(i.elemento + “ ”’);
caminharCentral(i.dir);

}
}

.
o

O

O i

Tela

Algoritmos e Estruturas de Dados Il (46)

Arvore Binaria: Pesquisa e Caminhamento

Caminhamento Central ou Em Ordem

void caminharCentral(No i) {
if (i 1= null) {
caminharCentral(i.esq);
System.out.print(i.elemento + “ ”’);
caminharCentral(i.dir);

}
}

O i

Tela

Algoritmos e Estruturas de Dados Il (47)

Arvore Binaria: Pesquisa e Caminhamento

Caminhamento Central ou Em Ordem

void caminharCentral(No i) {
if (i 1= null) {
caminharCentral(i.esq);
System.out.print(i.elemento + “ ”’);
caminharCentral(i.dir);

}
}

O i

Tela

Algoritmos e Estruturas de Dados Il (48)

Arvore Binaria: Pesquisa e Caminhamento

Caminhamento Central ou Em Ordem

void caminharCentral(No i) {
if (i 1= null) {
caminharCentral(i.esq);
System.out.print(i.elemento + “ ”’);
caminharCentral(i.dir);

}
}

O i

Tela

Algoritmos e Estruturas de Dados Il (49)

Arvore Binaria: Pesquisa e Caminhamento

Caminhamento Central ou Em Ordem

void caminharCentral(No i) {
if (i 1= null) {
caminharCentral(i.esq);
System.out.print(i.elemento + “ ”’);
caminharCentral(i.dir);

}
}

O i

Tela

Algoritmos e Estruturas de Dados Il (50)

Arvore Binaria: Pesquisa e Caminhamento

Caminhamento Central ou Em Ordem

void caminharCentral(No i) {
if (i 1= null) {
caminharCentral(i.esq);
System.out.print(i.elemento + “ ”’);
caminharCentral(i.dir);

}
}

RO i

Tela

Algoritmos e Estruturas de Dados Il (51)

Arvore Binaria: Pesquisa e Caminhamento

Caminhamento Central ou Em Ordem

void caminharCentral(No i) {
if (i 1= null) {
caminharCentral(i.esq);
System.out.print(i.elemento + “ ”’);
caminharCentral(i.dir);

}
}

PR PR

Tela 1

Algoritmos e Estruturas de Dados Il (52)

Arvore Binaria: Pesquisa e Caminhamento

Caminhamento Central ou Em Ordem

void caminharCentral(No i) {
if (i 1= null) {
caminharCentral(i.esq);
System.out.print(i.elemento + “ ”’);
caminharCentral(i.dir);

}
}

O i

Tela

Algoritmos e Estruturas de Dados Il (53)

Arvore Binaria: Pesquisa e Caminhamento

Caminhamento Central ou Em Ordem

void caminharCentral(No i) {
if (i 1= null) {
caminharCentral(i.esq);
System.out.print(i.elemento + “ ”’);
caminharCentral(i.dir);

}
}

PR PR

Tela 1 2

Algoritmos e Estruturas de Dados Il (54)

Arvore Binaria: Pesquisa e Caminhamento

Caminhamento Central ou Em Ordem

void caminharCentral(No i) {
if (i 1= null) {
caminharCentral(i.esq);
System.out.print(i.elemento + “ ”’);
caminharCentral(i.dir);

}
}

O i

Tela

Algoritmos e Estruturas de Dados Il (55)

Arvore Binaria: Pesquisa e Caminhamento

Caminhamento Central ou Em Ordem

void caminharCentral(No i) {
if (i 1= null) {
caminharCentral(i.esq);
System.out.print(i.elemento + “ ”’);
caminharCentral(i.dir);

}
}

.
o

O

O i

Tela

Algoritmos e Estruturas de Dados Il (56)

Arvore Binaria: Pesquisa e Caminhamento

Caminhamento Central ou Em Ordem

void caminharCentral(No i) {
if (i 1= null) {
caminharCentral(i.esq);
System.out.print(i.elemento + “ ”’);
caminharCentral(i.dir);

}
}

O i

Tela

Algoritmos e Estruturas de Dados Il (57)

Arvore Binaria: Pesquisa e Caminhamento

Caminhamento Central ou Em Ordem

void caminharCentral(No i) {
if (i 1= null) {
caminharCentral(i.esq);
System.out.print(i.elemento + “ ”’);
caminharCentral(i.dir);

}
}

.
S o

K o

NN i

Tela

Algoritmos e Estruturas de Dados Il (58)

Arvore Binaria: Pesquisa e Caminhamento

Caminhamento Central ou Em Ordem

void caminharCentral(No i) {
if (i 1= null) {
caminharCentral(i.esq);
System.out.print(i.elemento + “ ”’);
caminharCentral(i.dir);

}
}

O i

Tela

Algoritmos e Estruturas de Dados Il (59)

Arvore Binaria: Pesquisa e Caminhamento

Caminhamento Central ou Em Ordem

void caminharCentral(No i) {
if (i 1= null) {
caminharCentral(i.esq);
System.out.print(i.elemento + “ ”’);
caminharCentral(i.dir);

}
}

o i

Tela

Algoritmos e Estruturas de Dados Il (60)

Arvore Binaria: Pesquisa e Caminhamento

Caminhamento Central ou Em Ordem

void caminharCentral(No i) {
if (i 1= null) {
caminharCentral(i.esq);
System.out.print(i.elemento + “ ”’);
caminharCentral(i.dir);

}
}

O i

Tela

Algoritmos e Estruturas de Dados Il (61)

Arvore Binaria: Pesquisa e Caminhamento

Caminhamento Central ou Em Ordem

void caminharCentral(No i) {
if (i = null) {
caminharCentral(i.esq);
System.out.print(i.elemento + “ ”’);
caminharCentral(i.dir);

}
}

A K i

Tela 2 3 4

Algoritmos e Estruturas de Dados Il (62)

Arvore Binaria: Pesquisa e Caminhamento

Caminhamento Central ou Em Ordem

void caminharCentral(No i) {
if (i = null) {
caminharCentral(i.esq);
System.out.print(i.elemento + “ ”’);
caminharCentral(i.dir);

}
}

@ K i

Tela 2 3 4

Algoritmos e Estruturas de Dados Il (63)

Arvore Binaria: Pesquisa e Caminhamento

Caminhamento Central ou Em Ordem

void caminharCentral(No i) {
if (i = null) {
caminharCentral(i.esq);
System.out.print(i.elemento + “ ”’);
caminharCentral(i.dir);

}
}

S
K
@ K i

Tela 2 3 4 5

Algoritmos e Estruturas de Dados Il (64)

Arvore Binaria: Pesquisa e Caminhamento

Caminhamento Central ou Em Ordem

void caminharCentral(No i) {
if (i = null) {
caminharCentral(i.esq);
System.out.print(i.elemento + “ ”’);
caminharCentral(i.dir);

}
}

@ K i

Tela 2 3 4 5

Algoritmos e Estruturas de Dados Il (65)

Arvore Binaria: Pesquisa e Caminhamento

Caminhamento Central ou Em Ordem

void caminharCentral(No i) {
if (i = null) {
caminharCentral(i.esq);
System.out.print(i.elemento + “ ”’);
caminharCentral(i.dir);

}
}

@ K i

Tela 2 3 4 5 o

Algoritmos e Estruturas de Dados Il (66)

Arvore Binaria: Pesquisa e Caminhamento

Caminhamento Central ou Em Ordem

void caminharCentral(No i) {
if (i = null) {
caminharCentral(i.esq);
System.out.print(i.elemento + “ ”’);
caminharCentral(i.dir);

}
}

@ K i

Tela 2 3 4 5 o

Algoritmos e Estruturas de Dados Il (67)

Arvore Binaria: Pesquisa e Caminhamento

Caminhamento Central ou Em Ordem

void caminharCentral(No i) {
if (i = null) {
caminharCentral(i.esq);
System.out.print(i.elemento + “ ”’);
caminharCentral(i.dir);

}
}

.
S

O
@ K i

Tela 2 3 4 5 o

Algoritmos e Estruturas de Dados Il (68)

Arvore Binaria: Pesquisa e Caminhamento

Caminhamento Central ou Em Ordem

void caminharCentral(No i) {
if (i = null) {
caminharCentral(i.esq);
System.out.print(i.elemento + “ ”’);
caminharCentral(i.dir);

}
}

@ K i

Tela 2 3 4 5 o

Algoritmos e Estruturas de Dados Il (69)

Arvore Binaria: Pesquisa e Caminhamento

Caminhamento Central ou Em Ordem

void caminharCentral(No i) {
if (i = null) {
caminharCentral(i.esq);
System.out.print(i.elemento + “ ”’);
caminharCentral(i.dir);

}
}

@ i

Tela 2 3 4 5 o

)

Algoritmos e Estruturas de Dados Il (70)

Arvore Binaria: Pesquisa e Caminhamento

Caminhamento Central ou Em Ordem

void caminharCentral(No i) {
if (i = null) {
caminharCentral(i.esq);
System.out.print(i.elemento + “ ”’);
caminharCentral(i.dir);

}
}

@ K i

Tela 2 3 4 5 o

Algoritmos e Estruturas de Dados Il (71)

Arvore Binaria: Pesquisa e Caminhamento

Caminhamento Central ou Em Ordem

void caminharCentral(No i) {
if (i = null) {
caminharCentral(i.esq);
System.out.print(i.elemento + “ ”’);
caminharCentral(i.dir);

}
}

@ s

Tela 2 3 4 5 o

Algoritmos e Estruturas de Dados Il (72)

Arvore Binaria: Pesquisa e Caminhamento

Caminhamento Central ou Em Ordem

void caminharCentral(No i) {
if (i = null) {
caminharCentral(i.esq);
System.out.print(i.elemento + “ ”’);
caminharCentral(i.dir);

}
}

@ k2 i

Tela 2 3 4 5 o

Algoritmos e Estruturas de Dados Il (73)

Arvore Binaria: Pesquisa e Caminhamento

Caminhamento Central ou Em Ordem

void caminharCentral(No i) {
if (i = null) {
caminharCentral(i.esq);
System.out.print(i.elemento + “ ”’);
caminharCentral(i.dir);

}
}

@ s

Tela 2 3 4 5 6 7

Algoritmos e Estruturas de Dados Il (74)

Arvore Binaria: Pesquisa e Caminhamento

Caminhamento Central ou Em Ordem

void caminharCentral(No i) {
if (i = null) {
caminharCentral(i.esq);
System.out.print(i.elemento + “ ”’);
caminharCentral(i.dir);

}
}

@ K i

Tela 2 3 4 5 6 7

Algoritmos e Estruturas de Dados Il (75)

Arvore Binaria: Pesquisa e Caminhamento

Caminhamento Central ou Em Ordem

void caminharCentral(No i) {
if (i = null) {
caminharCentral(i.esq);
System.out.print(i.elemento + “ ”’);
caminharCentral(i.dir);

}
}

@ i

Tela 2 3 4 5 6 7 8

)

Algoritmos e Estruturas de Dados Il (76)

Arvore Binaria: Pesquisa e Caminhamento

Caminhamento Central ou Em Ordem

void caminharCentral(No i) {
if (i = null) {
caminharCentral(i.esq);
System.out.print(i.elemento + “ ”’);
caminharCentral(i.dir);

}
}

@ K i

Tela 2 3 4 5 6 7 8

Algoritmos e Estruturas de Dados Il (77)

Arvore Binaria: Pesquisa e Caminhamento

Caminhamento Central ou Em Ordem

void caminharCentral(No i) {
if (i = null) {
caminharCentral(i.esq);
System.out.print(i.elemento + “ ”’);
caminharCentral(i.dir);

}
}

.
S

O
@ K i

Tela 2 3 4 5 6 7 8 9

Algoritmos e Estruturas de Dados Il (78)

Arvore Binaria: Pesquisa e Caminhamento

Caminhamento Central ou Em Ordem

void caminharCentral(No i) {
if (i = null) {
caminharCentral(i.esq);
System.out.print(i.elemento + “ ”’);
caminharCentral(i.dir);

}
}

@ K i

Tela 2 3 4 5 6 7 8 9

Algoritmos e Estruturas de Dados Il (79)

Arvore Binaria: Pesquisa e Caminhamento

Caminhamento Central ou Em Ordem

void caminharCentral(No i) {
if (i = null) {
caminharCentral(i.esq);
System.out.print(i.elemento + “ ”’);
caminharCentral(i.dir);

}
}

@ K i

Tela 2 3 4 5 6 7 8 9

Algoritmos e Estruturas de Dados Il (80)

Arvore Binaria: Pesquisa e Caminhamento

Caminhamento Central ou Em Ordem

void caminharCentral(No i) {
if (i = null) {
caminharCentral(i.esq);
System.out.print(i.elemento + “ ”’);
caminharCentral(i.dir);

}
}

@ K i

Tela 2 3 4 5 6 7 8 9

Algoritmos e Estruturas de Dados Il (81)

Arvore Binaria: Pesquisa e Caminhamento

Caminhamento Central ou Em Ordem

void caminharCentral(No i) {
if (i = null) {
caminharCentral(i.esq);
System.out.print(i.elemento + “ ”’);
caminharCentral(i.dir);

}
}

@ K i

Tela 2 3 4 5 6 7 8 9 10

Algoritmos e Estruturas de Dados Il (82)

Arvore Binaria: Pesquisa e Caminhamento

Caminhamento Central ou Em Ordem

void caminharCentral(No i) {
if (i = null) {
caminharCentral(i.esq);
System.out.print(i.elemento + “ ”’);
caminharCentral(i.dir);

}
}

@ K i

Tela 2 3 4 5 6 7 8 9 10

Algoritmos e Estruturas de Dados Il (83)

Arvore Binaria: Pesquisa e Caminhamento

Caminhamento Central ou Em Ordem

void caminharCentral(No i) {
if (i = null) {
caminharCentral(i.esq);
System.out.print(i.elemento + “ ”’);
caminharCentral(i.dir);

}
}

@ K o,

Tela 2 3 4 5 6 7 8 9 10

Algoritmos e Estruturas de Dados Il (84)

Arvore Binaria: Pesquisa e Caminhamento

Caminhamento Central ou Em Ordem

void caminharCentral(No i) {
if (i = null) {
caminharCentral(i.esq);
System.out.print(i.elemento + “ ”’);
caminharCentral(i.dir);

}
}

@ K T

Tela 2 3 4 5 6 7 8 9 10

Algoritmos e Estruturas de Dados Il (85)

Arvore Binaria: Pesquisa e Caminhamento

Caminhamento Central ou Em Ordem

void caminharCentral(No i) {
if (i = null) {
caminharCentral(i.esq);
System.out.print(i.elemento + “ ”’);
caminharCentral(i.dir);

}
}

@ K o,

Tela 2 3 4 5 6 7 8 9 10 11

Algoritmos e Estruturas de Dados Il (86)

Arvore Binaria: Pesquisa e Caminhamento

Caminhamento Central ou Em Ordem

void caminharCentral(No i) {
if (i = null) {
caminharCentral(i.esq);
System.out.print(i.elemento + “ ”’);
caminharCentral(i.dir);

}
}

o o
+ oo
,@ o "

Tela 2 3 4 5 6 7 8 9 10 11

Algoritmos e Estruturas de Dados Il (87)

Arvore Binaria: Pesquisa e Caminhamento

Caminhamento Pds-fixado ou Pos-ordem

void caminharPos(No i) {
if (i 1= null) {
caminharPos(i.esq);
caminharPos(i.dir);
System.out.print(i.elemento + “ ”);

}
}

O i

Tela

Algoritmos e Estruturas de Dados Il (88)

Arvore Binaria: Pesquisa e Caminhamento

Caminhamento Pds-fixado ou Pos-ordem

void caminharPos(No i) {
if (i 1= null) {
caminharPos(i.esq);
caminharPos(i.dir);
System.out.print(i.elemento + “ ”);

}
}

O i

Tela 2 1 4 5 37 8 11 10 9 ©

Algoritmos e Estruturas de Dados Il (89)

Arvore Binaria: Pesquisa e Caminhamento

Caminhamento Pré-fixado ou Pré-ordem

void caminharPre(No i) {
if (i 1= null) {
System.out.print(i.elemento + “ ”);
caminharPre(i.esq);
caminharPre(i.dir);

}
}

O i

Tela

Algoritmos e Estruturas de Dados Il (90)

Arvore Binaria: Pesquisa e Caminhamento

Caminhamento Pré-fixado ou Pré-ordem

void caminharPre(No i) {
if (i 1= null) {
System.out.print(i.elemento + “ ”);
caminharPre(i.esq);
caminharPre(i.dir);

}
}

O i

Tela 6 3 1 2 54 9 8 710 11

Algoritmos e Estruturas de Dados Il (91)

Arvore Binaria: Pesquisa e Caminhamento

Exercicio Resolvido (1)

- Faca um meétodo que retorna a altura da arvore

Algoritmos e Estruturas de Dados Il (92)

Arvore Binaria: Pesquisa e Caminhamento

Exercicio Resolvido (1)

- Faca um meétodo que retorna a altura da arvore

public int getAltura(No i, int altura){
F(L == mutl){
altura--;
} else {
int alturaEsq = getAltura(i.esq, altura + 1);
int alturaDir = getAltura(i.dir, altura + 1);
altura = (alturaEsq > alturaDir) ? alturaEsq : alturaDir;

}

return altura;

Algoritmos e Estruturas de Dados Il (93)

Arvore Binaria: Pesquisa e Caminhamento

Exercicio Resolvido (2)

- Insira 100000 elementos de forma aleat6ria. Para cada insercao, mostre na

tela o numero de elementos da arvore, o logaritmo (base 2) desse numero e

a altura da arvore

Algoritmos e Estruturas de Dados Il (94)

Arvore Binaria: Pesquisa e Caminhamento

Exercicio Resolvido (2)

- Insira 100000 elementos de forma aleat6ria. Para cada insercao, mostre na

tela o numero de elementos da arvore, o logaritmo (base 2) desse numero e

a altura da arvore

ArvoreBinaria a = new ArvoreBinaria();

Random gerador = new Random();
gerador.setSeed(0);
for(int 1 = 1; 1 <= 100000; i++){

int valor;
do {

valor = Math.abs(gerador.nextInt());
} while (a.pesquisar(valor) == true);

a.inserir(valor);

if(1 % 1000 == 0){
double log2 = (Math.log(i) / Math.log(2));
log2 *= 1.39;
System.out.println("Nimero de nés = " + 1 + " --- log(i,2) =" + log2 + " --- h = " + a.getAltura());
}
}

Algoritmos e Estruturas de Dados Il (95)

Arvore Binaria: Pesquisa e Caminhamento

Exercicio Resolvido (3)

- Faca um meétodo que retorne a soma dos elementos existentes na arvore

Algoritmos e Estruturas de Dados Il (96)

Arvore Binaria: Pesquisa e Caminhamento

Exercicio Resolvido (3)

- Faca um meétodo que retorne a soma dos elementos existentes na arvore

public int soma(){
return soma(raiz);
}

public int soma(No i){
int resp = 0;
if(i != null){
resp = i.elemento + soma(i.esq) + soma(i.dir);
}

return resp;

Algoritmos e Estruturas de Dados Il (97)

Arvore Binaria: Pesquisa e Caminhamento

Exercicio Resolvido (4)

- Faca um método que retorne o numero de elementos pares existentes na

arvore

Algoritmos e Estruturas de Dados Il (98)

Arvore Binaria: Pesquisa e Caminhamento

Exercicio Resolvido (4)

- Faca um método que retorne o numero de elementos pares existentes na

arvore

public int numPares(){
return numPares(raiz);
}

public int numPares(No i){
int resp = 0;
if(1 !'= null){
resp = ((i.elemento % 2 == 0) 2 1 : 0) + numPares(i.esq) + numPares(i.dir);
3

return resp;

}

Algoritmos e Estruturas de Dados Il (99)

Arvore Binaria: Pesquisa e Caminhamento

Exercicio Resolvido (5)

- Faca um meétodo estatico que recebe dois objetos do tipo arvore binaria e

retorne um booleano indicando se as duas arvores sao iguais

Algoritmos e Estruturas de Dados Il (100)

Arvore Binaria: Pesquisa e Caminhamento

Exercicio Resolvido (5)

- Faca um meétodo estatico que recebe dois objetos do tipo arvore binaria e

retorne um booleano indicando se as duas arvores sao iguais

pUblic static boolean iguai (ArvoreBinaria ai, ArvoreBinaria a2){
return igual(al.raiz, a2.raiz);
}

private static boolean igual (No i1, No 12){
boolean resp;
if(11 != null && 12 != null){
resp = (il.elemento == i12.elemento) && igual(il.esq, i12.esq) && igual(il.dir, 12.dir);
} else if(11 == null && 12 == null){
resp = true;
} else {
resp = false;
}

return resp;

Algoritmos e Estruturas de Dados Il (101)

Arvore Binaria: Pesquisa e Caminhamento

Exercicio Resolvido (6)

- Faca um meétodo que retorna frue se a arvore contém algum numero

divisivel por onze

Algoritmos e Estruturas de Dados Il (102)

Arvore Binaria: Pesquisa e Caminhamento

Exercicio Resolvido (6)

- Faca um meétodo que retorna frue se a arvore contém algum numero

divisivel por onze

public boolean hasDiv11(){
return hasDivili(raiz);
}

public boolean hasDivi11(No i){
boolean resp = false;
if(l !'= null){
resp = (i.elemento % 11 == 0) || hasDivii(i.esq) || hasDivii(i.dir);
}

return resp;

Algoritmos e Estruturas de Dados Il (103)

Arvore Binaria: Pesquisa e Caminhamento

Exercicio Resolvido (7)

- Um algoritmo de ordenacao € o TreeSort que insere os elementos do array

em uma arvore binaria e utiliza um "caminhar” para ordenar os elementos
do array. Implemente o TreeSort e faga a analise de complexidade do

mesmo

Algoritmos e Estruturas de Dados Il (104)

Arvore Binaria: Pesquisa e Caminhamento

Exercicio Resolvido (7)

public class TreeSort {

- U private No raiz; eeSort que insere os elementos do array
private int n;

ef . > Caminhamento e utiliza um "caminhar”
public TreeSort() {

raiz = null: oy

oF = y. Implemente o TreeSort e faca a analise
}

dé

public int[] sort() {
int[] array = new int[n];

n =0; - -
sort(raiz, array); Supondo que a arvore e
t ; : ~
y balanceada, o custo de insergdo

é O(lg(n)) comparacodes. O

private void sort(No i, int[] array) {

if (1 != null) { custo de insercdo dos n
sort(i.esq, array); ,
array[n++] = i.elemento; elementos sera ®(n X Ig(n))
sort (i.dir, array); A
: comparacoes
}
public void inserir(int x) {
) o (.

}

Algoritmos e Estruturas de Dados Il (105)

Arvore Binaria: Pesquisa e Caminhamento

Exercicio Resolvido (8)
- Faca o método No toAB(Celula p1, CelulaDupla p2) que recebe o0 no

cabeca de uma lista simples e o de outra dupla. Em seguida, crie uma
arvore binaria contendo os elementos intercalados das duas listas e retorne

o0 endereco do no raiz da arvore criada

Algoritmos e Estruturas de Dados Il (106)

Arvore Binaria: Pesquisa e Caminhamento

Exercicio Resolvido (8)

No toAB(Celula p1l, CelulaDupla p2){

No resp = null;

pl = pl.prox;

p2 = p2.prox;

while(pl != null && p2 != null){

resp = inserir(resp, pl.elemento);
resp = inserir(resp, p2.elemento);
pl = pl.prox;
p2 = p2.prox;

}

while(pl != null){
resp = inserir(resp, pl.elemento);
pl = pl.prox;

}

while(p2 != null){
resp = inserir(resp, p2.elemento);
p2 = p2.prox;

}

return resp;

I'aDupIa p2) que recebe o no

upla. Em seguida, crie uma

calados das duas listas e retorne

No inserir(No i1, int x) throws Exception {
if &L =mally{
1 = new No(x);

} else if (x < i.elemento) {
i.esq = inserir(x, i.esq);

} else if (x > i.elemento) {
L.dir = thseriF(x, t.dir):

} else {
throw new Exception("Erro ao inserir!");

}

return i;

}

Algoritmos e Estruturas de Dados Il (107)

