big O initial commit
* time complexity * space complexity * constants, non-dominant terms * multi-part algorithms * amortized time
This commit is contained in:
parent
6d6c8d7fc4
commit
e039cc3f02
|
|
@ -0,0 +1,88 @@
|
|||
# Chapter 1
|
||||
|
||||
## Big O
|
||||
|
||||
### 1.1. Time complexity
|
||||
|
||||
* Big O: upper bound on the time. if O(N), then O(N^2), O(N^3), etc
|
||||
* Big Omega: lower bound. if omega(N), then omega(1), omega(logN)
|
||||
* Big theta: an algorithm is big theta(N) if it's both O(N) and omega(N). theta gives a tight bound on runtime
|
||||
|
||||
Best case scenarios:
|
||||
|
||||
* Best case: with any algorithm, in a special case, we can make O(1)
|
||||
* Worst case scenario: quick sort of a reverse ordered array, it might take O(N^2)
|
||||
* Expected case: O(NlogN)
|
||||
|
||||
For most algorithms, the worst case and the expected case are the same.
|
||||
|
||||
### 1.2. Space complexity
|
||||
|
||||
Space complexity is a parallel concept to time complexity. Stack space in recursive calls counts, too.
|
||||
|
||||
```c
|
||||
int sum(int n) { /* ex1 */
|
||||
if (n <= 0) {
|
||||
return 0;
|
||||
}
|
||||
return n + sum(n - 1);
|
||||
}
|
||||
```
|
||||
|
||||
This code takes O(n) time and O(n) space. in sum(4), there are 4 calls to the stack (sum(3), sum(2), sum(1), sum(0)).
|
||||
|
||||
```c
|
||||
int pairSumSeq(int n) { /* ex2 */
|
||||
int sum = 0;
|
||||
for(int i=0; i < n; i++) {
|
||||
sum += pairSum(i, i+1);
|
||||
}
|
||||
}
|
||||
int pairSum(int a, int b) {
|
||||
return a + b;
|
||||
}
|
||||
```
|
||||
|
||||
`ex2` takes O(n) time complexity but O(1) space. There are O(n) calls to `pairSum`, but those calls don't happen simultaneously like in the recursive case of `ex1`.
|
||||
|
||||
### 1.3. Drop the constants
|
||||
|
||||
It's possible for O(N) code to run faster than O(1) code for specific inputs. Big O just describes the rate of increase, so we drop constants in runtime. O(2N) = O(N).
|
||||
|
||||
### 1.4. Drop the non-dominant terms
|
||||
|
||||
O(N^2 + N) = O(N^2)
|
||||
|
||||
### 1.5. Multi-part algorithms
|
||||
|
||||
In an algorithm with two steps, when to multiply runtimes and when to add?
|
||||
|
||||
* Add runtime: do A chinks of work, then B chunks of work
|
||||
|
||||
```c
|
||||
for(int a: arrA) {
|
||||
print(a);
|
||||
}
|
||||
for(int b: arrB) {
|
||||
print(b);
|
||||
}
|
||||
```
|
||||
|
||||
* Multiply runtime: do B chunks of work for each element in A.
|
||||
|
||||
```c
|
||||
for(int a: arrA) {
|
||||
for(int b: arrB) {
|
||||
print(a + ", " + b);
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### 1.6. Amortized time
|
||||
|
||||
With `ArrayList`s, when they reach full capacity, the class creates a new array with double the capacity and copy all the elements over to the new array. Say we want to add a new element to the `ArrayList`.
|
||||
|
||||
* If the array is full and contains N elements, adding a new element takes O(N) time because we have to create a new array of size 2N and then copy N elements over, O(2N + N) = O(3N) = O(N).
|
||||
* But most of the times the `ArrayList` won't be full, and adding a new element will take O(1).
|
||||
|
||||
In the worst case it takes O(N), but in N-1 cases it takes O(1). Once the worst case happens, it won't happen again for so long that the cost is "amortized". If we add X elements to the `ArrayList`, it takes ~2X --> X adds take O(X) time, the amortized time for each adding is O(1).
|
||||
Loading…
Reference in New Issue