""" This file contains the implementation of a simple interpreter of low-level instructions. The interpreter takes a program, represented as its first instruction, plus an environment, which is a stack of bindings. Bindings are pairs of variable names and values. New bindings are added to the stack whenever new variables are defined. Bindings are never removed from the stack. In this way, we can inspect the history of state transformations caused by the interpretation of a program. This file uses doctests all over. To test it, just run python 3 as follows: "python3 -m doctest main.py". The program uses syntax that is excluive of Python 3. It will not work with standard Python 2. """ from collections import deque from abc import ABC, abstractmethod class Env: """ A table that associates variables with values. The environment is implemented as a stack, so that previous bindings of a variable V remain available in the environment if V is overassigned. Example: >>> e = Env() >>> e.set("a", 2) >>> e.set("a", 3) >>> e.get("a") 3 >>> e = Env({"b": 5}) >>> e.set("a", 2) >>> e.get("a") + e.get("b") 7 """ def __init__(s, initial_args={}): s.env = deque() for var, value in initial_args.items(): s.env.appendleft((var, value)) def get(self, var): """ Finds the first occurrence of variable 'var' in the environment stack, and returns the value associated with it. """ val = next((value for (e_var, value) in self.env if e_var == var), None) if val is not None: return val else: raise LookupError(f"Absent key {val}") def set(s, var, value): """ This method adds 'var' to the environment, by placing the binding '(var, value)' onto the top of the environment stack. """ s.env.appendleft((var, value)) def dump(s): """ Prints the contents of the environment. This method is mostly used for debugging purposes. """ for var, value in s.env: print(f"{var}: {value}") class Inst(ABC): """ The representation of instructions. All that an instruction has, that is common among all the instructions, is the next_inst attribute. This attribute determines the next instruction that will be fetched after this instruction runs. Also, every instruction has an index, which is always different. The index is incremented whenever a new instruction is created. """ next_index = 0 def __init__(self): self.nexts = [] self.preds = [] self.ID = Inst.next_index Inst.next_index += 1 def add_next(self, next_inst): self.nexts.append(next_inst) next_inst.preds.append(self) @classmethod @abstractmethod def definition(self): raise NotImplementedError @classmethod @abstractmethod def uses(self): raise NotImplementedError def get_next(self): if len(self.nexts) > 0: return self.nexts[0] else: return None class BinOp(Inst): """ The general class of binary instructions. These instructions define a value, and use two values. As such, it contains a routine to extract the defined value, and the list of used values. """ def __init__(s, dst, src0, src1): s.dst = dst s.src0 = src0 s.src1 = src1 super().__init__() @classmethod @abstractmethod def get_opcode(self): raise NotImplementedError def definition(s): return set([s.dst]) def uses(s): return set([s.src0, s.src1]) def __str__(self): op = self.get_opcode() inst_s = f"{self.ID}: {self.dst} = {self.src0}{op}{self.src1}" pred_s = f"\n P: {', '.join([str(inst.ID) for inst in self.preds])}" next_s = f"\n N: {self.nexts[0].ID if len(self.nexts) > 0 else ''}" return inst_s + pred_s + next_s class Add(BinOp): """ Example: >>> a = Add("a", "b0", "b1") >>> e = Env({"b0":2, "b1":3}) >>> a.eval(e) >>> e.get("a") 5 >>> a = Add("a", "b0", "b1") >>> a.get_next() == None True """ def eval(self, env): env.set(self.dst, env.get(self.src0) + env.get(self.src1)) def get_opcode(self): return "+" class Mul(BinOp): """ Example: >>> a = Mul("a", "b0", "b1") >>> e = Env({"b0":2, "b1":3}) >>> a.eval(e) >>> e.get("a") 6 """ def eval(s, env): env.set(s.dst, env.get(s.src0) * env.get(s.src1)) def get_opcode(self): return "*" class Lth(BinOp): """ Example: >>> a = Lth("a", "b0", "b1") >>> e = Env({"b0":2, "b1":3}) >>> a.eval(e) >>> e.get("a") True """ def eval(s, env): env.set(s.dst, env.get(s.src0) < env.get(s.src1)) def get_opcode(self): return "<" class Geq(BinOp): """ Example: >>> a = Geq("a", "b0", "b1") >>> e = Env({"b0":2, "b1":3}) >>> a.eval(e) >>> e.get("a") False """ def eval(s, env): env.set(s.dst, env.get(s.src0) >= env.get(s.src1)) def get_opcode(self): return ">=" class Bt(Inst): """ This is a Branch-If-True instruction, which diverts the control flow to the 'true_dst' if the predicate 'pred' is true, and to the 'false_dst' otherwise. Example: >>> e = Env({"t": True, "x": 0}) >>> a = Add("x", "x", "x") >>> m = Mul("x", "x", "x") >>> b = Bt("t", a, m) >>> b.eval(e) >>> b.get_next() == a True """ def __init__(s, cond, true_dst=None, false_dst=None): super().__init__() s.cond = cond s.nexts = [true_dst, false_dst] if true_dst != None: true_dst.preds.append(s) if false_dst != None: false_dst.preds.append(s) def definition(s): return set() def uses(s): return set([s.cond]) def add_true_next(s, true_dst): s.nexts[0] = true_dst true_dst.preds.append(s) def add_next(s, false_dst): s.nexts[1] = false_dst false_dst.preds.append(s) def eval(s, env): """ The evaluation of the condition sets the next_iter to the instruction. This value determines which successor instruction is to be evaluated. Any values greater than 0 are evaluated as True, while 0 corresponds to False. """ if env.get(s.cond): s.next_iter = 0 else: s.next_iter = 1 def get_next(s): return s.nexts[s.next_iter] def __str__(self): inst_s = f"{self.ID}: bt {self.cond}" pred_s = f"\n P: {', '.join([str(inst.ID) for inst in self.preds])}" next_s = f"\n NT:{self.nexts[0].ID} NF:{self.nexts[1].ID}" return inst_s + pred_s + next_s def interp(instruction, environment): """ This function evaluates a program until there is no more instructions to evaluate. Example: >>> env = Env({"m": 3, "n": 2, "zero": 0}) >>> m_min = Add("answer", "m", "zero") >>> n_min = Add("answer", "n", "zero") >>> p = Lth("p", "n", "m") >>> b = Bt("p", n_min, m_min) >>> p.add_next(b) >>> interp(p, env).get("answer") 2 """ if instruction: instruction.eval(environment) return interp(instruction.get_next(), environment) else: return environment