73 lines
1.6 KiB
Markdown
73 lines
1.6 KiB
Markdown
# Find Maximum depth of binary tree
|
|
|
|
[LeetCode problem](https://leetcode.com/problems/maximum-depth-of-binary-tree/)
|
|
|
|
Given the root of a binary tree, return its maximum depth. A binary tree's maximum depth is the number of nodes along the longest path from the root node down to the farthest leaf node.
|
|
|
|

|
|
|
|
Example: input: [3,9,20,null,null,15,7], output: 3.
|
|
|
|
## LeetCode initial code
|
|
|
|
```python
|
|
# Definition for a binary tree node.
|
|
# class TreeNode:
|
|
# def __init__(self, val=0, left=None, right=None):
|
|
# self.val = val
|
|
# self.left = left
|
|
# self.right = right
|
|
class Solution:
|
|
def maxDepth(self, root: Optional[TreeNode]) -> int:
|
|
```
|
|
|
|
## Recursive approach
|
|
|
|
Depth first
|
|
|
|
```python
|
|
def maxDepth(self, root: Optional[TreeNode]) -> int:
|
|
def max_depth(root, depth):
|
|
if not root: return depth
|
|
return max(max_depth(root.left, depth+1), max_depth(root.right, depth+1))
|
|
|
|
return max_depth(root, 0)
|
|
```
|
|
|
|
## Iterative solution
|
|
|
|
Breadth first
|
|
|
|
```python
|
|
def maxDepth(self, root: Optional[TreeNode]) -> int:
|
|
|
|
if not root:
|
|
return 0
|
|
|
|
queue = [root]
|
|
depth = 0
|
|
|
|
while True:
|
|
|
|
if not queue:
|
|
break
|
|
|
|
node_count = len(queue)
|
|
depth += 1
|
|
|
|
while node_count > 0:
|
|
|
|
node = queue[0]
|
|
queue.pop(0)
|
|
|
|
if node.left:
|
|
queue.append(node.left)
|
|
if node.right:
|
|
queue.append(node.right)
|
|
|
|
node_count -= 1
|
|
|
|
return depth
|
|
|
|
```
|